Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neurotox Res ; 41(4): 311-323, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36922461

RESUMO

Phosphodiesterase 4 inhibitors (PDE4-I), which selectively increase cyclic adenosine monophosphate (cAMP) levels, have shown neuroprotective effects after several neurological injuries inducing blood-brain barrier (BBB) damage including local/focal cerebral ischemia. The present investigated whether roflumilast confers BBB neuroprotection in the hippocampus after transient global cerebral ischemia (TGCI) in rats. TGCI resulted in whole BBB disruption as measured by the increase of Evans blue (EB) and IgG extravasation, neurodegeneration, and downregulation of claudin-5 and endothelial nitric oxide synthase (eNOS) levels in the CA1 hippocampal subfield of ischemic rats. Roflumilast attenuated BBB disruption and restored the levels of eNOS in the CA1 hippocampal area. Moreover, roflumilast increased the levels of B2 cell lymphoma (BcL-2) and neuron-glial antigen-2 (NG2) in the CA1 subfield after global ischemia in rats. The protective effects of roflumilast against TGCI-induced BBB breakdown might involve preservation of BBB integrity, vascularization and angiogenesis, and myelin repair.


Assuntos
Isquemia Encefálica , Ataque Isquêmico Transitório , Ratos , Animais , Barreira Hematoencefálica/metabolismo , Isquemia Encefálica/metabolismo , Hipocampo/metabolismo
2.
Behav Brain Res ; 439: 114217, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36400237

RESUMO

Diabetic encephalopathy is related to serious damage to the Central Nervous System leading to several disturbances in memory processing and emotions. It is known that the cyclic adenosine 3',5'-monophosphate (cAMP) responsive element-binding protein (CREB) pathway participates in neuronal plasticity and prevention of neuroinflammation, as well as the mediation of learning/memory processes and emotions in brain areas such as the hippocampus (HIP) and prefrontal cortex (PFC). We aimed to investigate the effect of acute (one injection) and long-term treatment (21 days) with roflumilast (ROF; i.p.; 0, 0.01, 0.03, 0.1 mg/kg), a drug able to inhibit the enzyme phosphodiesterase-4 (PDE-4) responsible for cAMP hydrolysis, on parameters related to the acquisition of fear extinction memory and anxiety-like responses in animals with type-1 diabetes mellitus (T1DM) induced through one injection of streptozotocin (60 mg/kg; ip; STZ animals). When we performed acute treatment, no difference was observed between all the groups when resubmitted to the same context paired with an aversive stimulus (footshock) or to a neutral context. In contrast, long-term treatment was able to improve learning of extinction fear memory and discriminating between a conditioned and neutral context. Moreover, this treatment decreased the pronounced anxiety-like response of STZ animals. In addition, there was an increase in the product of the CREB signaling pathway, the pro brain-derived neurotrophic factor, in the HIP and PFC of these animals. The treatment did not impair glycemic control, whereas it decreased the animal's blood glucose levels. To conclude, these findings suggest that ROF treatment repositioning has potential for future translational investigations involving diabetic patients considering its beneficial effects on emotional processes related to fear memory and anxiety, in addition to improvement of glycemic control.


Assuntos
Diabetes Mellitus Tipo 1 , Medo , Animais , Medo/fisiologia , Extinção Psicológica/fisiologia , Diabetes Mellitus Tipo 1/complicações , Diabetes Mellitus Tipo 1/tratamento farmacológico , Ansiedade/tratamento farmacológico , Modelos Animais de Doenças
3.
Mol Neurobiol ; 58(10): 5338-5355, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34302281

RESUMO

Evidence for the clinical use of neuroprotective drugs for the treatment of cerebral ischemia (CI) is still greatly limited. Spatial/temporal disorientation and cognitive dysfunction are among the most prominent long-term sequelae of CI. Cannabidiol (CBD) is a non-psychotomimetic constituent of Cannabis sativa that exerts neuroprotective effects against experimental CI. The present study investigated possible neuroprotective mechanisms of action of CBD on spatial memory impairments that are caused by transient global cerebral ischemia (TGCI) in rats. Hippocampal synaptic plasticity is a fundamental mechanism of learning and memory. Thus, we also evaluated the impact of CBD on neuroplastic changes in the hippocampus after TGCI. Wistar rats were trained to learn an eight-arm aversive radial maze (AvRM) task and underwent either sham or TGCI surgery. The animals received vehicle or 10 mg/kg CBD (i.p.) 30 min before surgery, 3 h after surgery, and then once daily for 14 days. On days 7 and 14, we performed a retention memory test. Another group of rats that received the same pharmacological treatment was tested in the object location test (OLT). Brains were removed and processed to assess neuronal degeneration, synaptic protein levels, and dendritic remodeling in the hippocampus. Cannabidiol treatment attenuated ischemia-induced memory deficits. In rats that were subjected to TGCI, CBD attenuated hippocampal CA1 neurodegeneration and increased brain-derived neurotrophic factor levels. Additionally, CBD protected neurons against the deleterious effects of TGCI on dendritic spine number and the length of dendritic arborization. These results suggest that the neuroprotective effects of CBD against TGCI-induced memory impairments involve changes in synaptic plasticity in the hippocampus.


Assuntos
Canabidiol/uso terapêutico , Hipocampo/efeitos dos fármacos , Ataque Isquêmico Transitório/prevenção & controle , Plasticidade Neuronal/efeitos dos fármacos , Neuroproteção/efeitos dos fármacos , Sinapses/efeitos dos fármacos , Animais , Canabidiol/farmacologia , Modelos Animais de Doenças , Hipocampo/metabolismo , Hipocampo/patologia , Ataque Isquêmico Transitório/metabolismo , Ataque Isquêmico Transitório/patologia , Masculino , Plasticidade Neuronal/fisiologia , Neuroproteção/fisiologia , Técnicas de Cultura de Órgãos , Ratos , Ratos Wistar , Memória Espacial/efeitos dos fármacos , Memória Espacial/fisiologia , Sinapses/metabolismo , Sinapses/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...